Faculty of King Abdullah II School for Information Technology
Department of Computer Science
Study Plan
Master's In Computer Science
(Thesis Track)

First: General Rules Conditions:
1. This plan conforms to the valid regulations of the programs of graduate studies.
2. Specialties of Admission:
 - First Priority: Bachelor of Computer Science (CS)
 - Second Priority: Bachelor of Computer Networks
 - Third Priority: Bachelor of Computer Information Systems (CIS)
 - Fourth Priority: Bachelor of Software Engineering
 - Fifth Priority: Bachelor of Business Information Systems (BIS)/Business Information Technology (BIT)
 - Sixth Priority: Bachelor of Computer Engineering
 - Seventh Priority: Bachelor of specialty within information technology.

Second: Special Conditions: None

Third : Study Plan : Studying (33) Credit Hours as follows:
1. Obligatory courses: (15) Credit Hours:

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course Title</th>
<th>Credit hrs.</th>
<th>Theory</th>
<th>Practical</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1901710</td>
<td>Research Methodologies in Computer Science</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>----</td>
</tr>
<tr>
<td>1901715</td>
<td>Theory of Algorithms</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>----</td>
</tr>
<tr>
<td>1901761</td>
<td>Operating Systems</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>----</td>
</tr>
<tr>
<td>1901765</td>
<td>Computer Networks</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>----</td>
</tr>
<tr>
<td>1902723</td>
<td>Database Systems</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>----</td>
</tr>
</tbody>
</table>

2. Elective Courses: Studying (9) Credit hours from the following:

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course Title</th>
<th>Credit hrs.</th>
<th>Theory</th>
<th>Practical</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1901713</td>
<td>Formal Compiling Methods</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>----</td>
</tr>
<tr>
<td>1901717</td>
<td>Theory of Computation and Complexity</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>----</td>
</tr>
<tr>
<td>1901736</td>
<td>Computational Intelligence</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>----</td>
</tr>
<tr>
<td>1901738</td>
<td>Spatial and Temporal Databases</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>----</td>
</tr>
<tr>
<td>1901752</td>
<td>Parallel and Distributed Computing</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>----</td>
</tr>
<tr>
<td>1901754</td>
<td>Parallel Architecture</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>----</td>
</tr>
<tr>
<td>1901755</td>
<td>Advanced Methods in Modeling and Simulation</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>----</td>
</tr>
<tr>
<td>1901757</td>
<td>Image Processing</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>----</td>
</tr>
<tr>
<td>1901766</td>
<td>Wireless Networks</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>----</td>
</tr>
<tr>
<td>1901767</td>
<td>Computer Network Security</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>----</td>
</tr>
<tr>
<td>1901768</td>
<td>Mobile Location Based Services (MLBS)</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>----</td>
</tr>
<tr>
<td>1901775</td>
<td>Programming Languages Design</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>----</td>
</tr>
<tr>
<td>1901788</td>
<td>Selected Topics in Computer Science</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>----</td>
</tr>
</tbody>
</table>

3. Thesis: (9) Credit hours (1901799).
Faculty of King Abdullah II School for Information Technology
Department of Computer Science
Course Description
Master's In Computer Science
(Thesis Track)

1901710 Research Methodologies in Computer Science 3^1 Credit Hours
This course focuses on research methods, research process, use of research tools and techniques, writing and presentation skills to the young researchers. This course is intended to provide the students with a broad overview of methods and concepts (both quantitative and qualitative research). Students should be confident in using the right methods and tools to analyze data. They will also be able to better design their primary research studies as well as to quickly enter and analyze this information.

1901715 Theory of Algorithms 3^1 Credit Hours
This course provides Strategies of algorithms synthesis and analysis. Design methodologies of classical algorithm categories such as: divide-and-conquer, greedy method, dynamic programming, search and traversal, backtracking, and branch-and-bound. Computational complexity and important theoretical results from lower-and upper-bound studies, NP-hard, and NP-complete problems will be addressed.

1901761 Operating Systems 3^1 Credit Hours
This course provides Distributed operating systems; Synchronization in distributed operating systems; Process Management in distributed operating systems; Distributed file systems; Distributed shared memory; Real-time operating systems; Scheduling in real-time operating systems.

1901765 Computer Networks 3^1 Credit Hours
This course discusses Computer Networks and the Internet, Data Link Layer, Network Layer, Transport Layer Options (Silly Window Syndrome, Delayed ACK, Selective Acknowledgments, Selective Retransmission Request (SRR), Time Stamp, Window Scale); VLANs (Virtual Local Area Networks); Advanced Multimedia-Networking Protocols: Real-time Transmission Protocol (RTP), Real-time Transmission Control Protocol (RTCP), Session Initiation Protocol (SIP); Network-Management Protocols: Simple Network Management protocol (SNMP), Structure of Management Information (SMI), Management Information Base (MIB); Quality of Service (QoS): Integrated Services (Intserv), Resource Reservation protocol (RSVP), Differentiated Service (Diffserv); Asynchronous Transfer Mode (ATM).
1902723 Database Systems
Credit Hours
Advance data modeling concepts: advance relational data modeling, object oriented data modeling, database design theory, advance relational algebra, database normalization, object oriented database design, advance query languages, advance relational SQL constructs, object oriented query languages, database integrity, concurrency control, concurrency problems, concurrency approaches, database recovery, recovery solutions and approaches, database security.

1901713 Formal Compiling Methods
Credit Hours
This course explores foundation of Compiler design, principles, techniques & tools. Topics include Compilation Phases, Run-time environments, Machine-Independent Optimization, Instruction-Level Parallelism, Optimizing for Parallelism as Locality, Interprocedural analysis.

1901717 Theory of Computation and Complexity
Credit Hours

1901736 Computational Intelligence
Credit Hours
This course focuses on artificial intelligence from an agent perspective, and explores issues of knowledge representation and reasoning including heuristic and stochastic search, logical and probabilistic reasoning, planning, learning, and perception. Advanced topics will be selected from areas such as robotics, vision, natural language processing, and philosophy of mind.

Theory
1901738 Spatial and Temporal Databases
This course considers models of spatial databases, how data is structured, stored, indexed, retrieved, and displayed. Other topics include fuzzy spatial databases, temporal databases, multidimensional access methods, query processing, spatio-temporal data management, remotely-sensed data, and spatial data mining.

1901752 Parallel and Distributed Computing
The course is centered in three concepts: Architectures, Algorithms and programming. Parallel and Distributed Architectures: Parallel and Distributed computer taxonomy, example of Parallel and Distributed computers, fundamental communication operations, and performance metrics. Parallel algorithms: design and analysis of parallel algorithms with emphasis on sorting, matrix problems, and graph problems. Parallel programming: types of parallelism, parallel programming paradigms, message passing programming, data and parallel programming.

1901754 Parallel Architecture

1901755 Advanced methods in Modeling and Simulation
Advanced concepts of computer simulation; models for computer simulation; random numbers: Pseudorandom number generation and testing, Monte Carlo methods. distribution functions. Simulation modeling: discrete-event simulation, continuous simulation; verification and validation of simulation models: input analysis, output analysis. Queuing theory models; design codes, test and debug simulation programs. Sample applications.

1901757 Image Processing
The course provides mathematical foundations and practical techniques for digital manipulation of images, image acquisition, representation, preprocessing, segmentation, and compression. Other topics include multi-resolution image processing, wavelets, morphological image processing, noise reduction and restoration, simple feature extraction and recognition tasks, image registration.

1 Theory
1901766 Wireless Networks 31 Credit Hours
Wireless Networks: IEEE 802.11 (Point Coordination Function and Distributed Coordination Function), WiMAX, Mobile IP; Routing Protocols for Wired and Wireless Networks: Distance Vector Routing Protocol (D.V.), Link State Routing Protocols (L.S.), Ad hoc On demand Distance Vector (AODV), Dynamic Source Routing (DSR); Advanced TCP Protocols: TCP Adaptive Timeout, TCP Adaptively for Wireless Networks: I-TCP, MTCP, Split TCP; Cellular Networks and General Packet Radio Service (GPRS); QoS and Real time applications for wireless networks.

1901767 Computer Network Security 31 Credit Hours
Advance topics in Cryptography; Authentication; Integrity; Key Distribution and Certification; Access Control: Firewalls; Attacks and Countermeasures: Mapping, Packet Sniffing, IP Spoofing, Denial-of-Service and Distributed Denial-of-Service Attacks, Hijacking; Security in Many Layers: HTTPS, Secure E-mail, Secure Sockets Layer (SSL) and Transport Layer Security (TLS), IPsec, Security in wireless networks such as IEEE 802.11, Mobile agents security.

1901768 Mobile Location Based Services (MLBS) 31 Credit Hours
MLBS applications: usage, area, taxonomy, privacy, marketing; The development of MLBS: performance considerations; Navigation systems: spatial database, gateway services, route determination location utility services, ...; MLBS and data management: middleware for MLBS protocol, content modeling, update management, linear referencing; MLBS interoperability and standards; MLBS data collection: satellite positioning systems, indoor positioning systems, network-based positioning; MLBS data transmission in Mobile communication systems: cellular-based mobile, wireless local area networks, ad-hoc networking, and service discovery.

1901775 Programming Languages Design 31 Credit Hours
This course discusses advanced principles underlying current programming languages and models. Topics include control and data abstractions, language processing and binding, indeterminacy and delayed evaluation, and languages and models for parallel and distributed processing. A variety of computational paradigms are discussed: functional programming, logic programming, object-oriented programming and data flow programming.

1901788 Selected Topics in Computer Science 31 Credit Hours
Lectures on and study of selected topics in current research and recent developments in computer science.

1 Theory
Faculty of King Abdullah II School for Information Technology
Department of Computer Science
Study Plan
Master's in Computer Science
(Non-Thesis Track)

First: General Rules Conditions:
1. This plan conforms to the valid regulations of the programs of graduate studies.
2. Specialties of Admission:
 - First Priority: Bachelor of Computer Science (CS)
 - Second Priority: Bachelor of Computer Networks
 - Third Priority: Bachelor of Computer Information Systems (CIS)
 - Fourth Priority: Bachelor of Software Engineering
 - Fifth Priority: Bachelor of Business Information Systems (BIS)/Business Information Technology (BIT)
 - Sixth Priority: Bachelor of Computer Engineering
 - Seventh Priority: Bachelor of specialty within information technology.

Second: Special Conditions: None

Third : Study Plan : Studying (33) Credit Hours as follows:

1. Obligatory Courses: (24) Credit Hours:

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course Title</th>
<th>Credit hrs.</th>
<th>Theory</th>
<th>Practical</th>
<th>Pre/Co-requisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1901710</td>
<td>Research Methodologies in Computer Science</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1901715</td>
<td>Theory of Algorithms</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1901717</td>
<td>Theory of Computation and Complexity</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1901736</td>
<td>Computational Intelligence</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1901752</td>
<td>Parallel and Distributed Computing</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1901761</td>
<td>Operating Systems</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1901765</td>
<td>Computer Networks</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1902723</td>
<td>Database Systems</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

2. Elective Courses: Studying (9) Credit hours from the following:

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course Title</th>
<th>Credit hrs.</th>
<th>Theory</th>
<th>Practical</th>
<th>Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1901713</td>
<td>Formal Compiling Methods</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1901718</td>
<td>Evolutionary Algorithms (EA)</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1901738</td>
<td>Spatial and Temporal Databases</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1901754</td>
<td>Parallel Architecture</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1901755</td>
<td>Advanced Methods in Modeling and Simulation</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1901757</td>
<td>Image Processing</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1901760</td>
<td>Wireless Networks</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1901767</td>
<td>Computer Network Security</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1901768</td>
<td>Mobile Location Based Services</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1901775</td>
<td>Programming Languages Design</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1901788</td>
<td>Selected Topics in Computer Science</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

3. A comprehensive exam (1901798).
Faculty of King Abdullah II School for Information Technology
Department of Computer Science
Course Description
Master's in Computer Science
(Non-Thesis Track)

1901710 Research Methodologies in Computer Science
3\frac{1}{2} Credit Hours

This course focuses on research methods, research process, use of research tools and techniques, writing and presentation skills to the young researchers. This course is intended to provide the students with a broad overview of methods and concepts (both quantitative and qualitative research). Students should be confident in using the right methods and tools to analyze data. They will also be able to better design their primary research studies as well as to quickly enter and analyze this information.

1901715 Theory of Algorithms
3\frac{1}{2} Credit Hours

This course provides Strategies of algorithms synthesis and analysis. Design methodologies of classical algorithm categories such as: divide-and-conquer, greedy method, dynamic programming, search and traversal, backtracking, and branch-and-bound. Computational complexity and important theoretical results from lower-and upper-bound studies, NP-hard, and NP-complete problems will be addressed.

1901717 Theory of Computation and Complexity
3\frac{1}{2} Credit Hours

1901736 Computational Intelligence

This course focuses on artificial intelligence from an agent perspective, and explores issues of knowledge representation and reasoning including heuristic and stochastic search, logical and probabilistic reasoning, planning, learning, and perception. Advanced topics will be selected from areas such as robotics, vision, natural language processing, and philosophy of mind.

1901752 Parallel and Distributed Computing

The course is centered in three concepts: Architectures, Algorithms and programming. Parallel and Distributed Architectures: Parallel and Distributed computer taxonomy, example of Parallel and Distributed computers, fundamental communication operations, and performance metrics. Parallel algorithms: design and analysis of parallel algorithms with emphasis on sorting, matrix problems, and graph problems. Parallel programming: types of parallelism, parallel programming paradigms, message passing programming, data and parallel programming.

1901761 Operating Systems

This course provides Distributed operating systems; Synchronization in distributed operating systems; Process Management in distributed operating systems; Distributed file systems; Distributed shared memory; Real-time operating systems; Scheduling in real-time operating systems.

1901765 Computer Networks

This course discusses Computer Networks and the Internet, Data Link Layer, Network Layer, Transport Layer Options (Silly Window Syndrome, Delayed ACK, Selective Acknowledgments, Selective Retransmission Request (SRR), Time Stamp, Window Scale); VLANs (Virtual Local Area Networks); Advanced Multimedia-Networking Protocols: Real-time Transmission Protocol (RTP), Real-time Transmission Control Protocol (RTCP), Session Initiation Protocol (SIP); Network-Management Protocols: Simple Network Management protocol (SNMP), Structure of Management Information (SMI), Management Information Base (MIB); Quality of Service (QoS): Integrated Services (Intserv), Resource Reservation protocol (RSVP), Differentiated Service (Diffserv); Asynchronous Transfer Mode (ATM).

1902723 Database Systems

Advance data modeling concepts: advance relational data modeling, object oriented data modeling, database design theory, advance relational algebra, database normalization, object oriented database design, advance query languages, advance relational SQL constructs, object oriented query languages, database integrity, concurrency control, concurrency problems, concurrency approaches, database recovery, recovery solutions and approaches, database security.

1 Theory
1901713 Formal Compiling Methods
This course explores foundation of Compiler design, principles, techniques & tools. Topics include Compilation Phases, Run-time environments, Machine-Independent Optimization, Instruction-Level Parallelism, Optimizing for Parallelism as Locality, Interprocedural analysis.

1901718 Evolutionary Algorithms (EA)
Evolutionary Algorithms (EA) are stochastic searching algorithms whose search methods are based on natural evolution, Darwinian theories of fighting for survival, genetic inheritance, natural selection and reproduction of best individuals. They provide robust search in complex space, and are computationally simple but powerful for finding optimal solutions in general search spaces. EA consider simultaneously several potential solutions that are treated as individuals to form a population. The individuals interact with each other and create new individuals to form a new generation. The course, introduce the theoretical background of EA, Where the student should be able to build efficient algorithms, and avoiding problems often encountered by EA. The course should enable the students to have several goals; Identify the kind of optimization problem the student is dealing with, To decided if the problem can be solved with an EA, To select an appropriate EA., To make a rough estimation of the effort needed to solve the problem using an EA, And finally, to solve the problem with an EA. Evolutionary algorithms includes: genetic algorithms, genetic programming, grammar evolution...

1901738 Spatial and Temporal Databases
This course considers models of spatial databases, how data is structured, stored, indexed, retrieved, and displayed. Other topics include fuzzy spatial databases, temporal databases, multidimensional access methods, query processing, spatio-temporal data management, remotely-sensed data, and spatial data mining.

1901754 Parallel Architecture

1901755 Advanced Methods in Modeling and Simulation
Advanced concepts of computer simulation; models for computer simulation; random numbers: Pseudorandom number generation and testing, Monte Carlo methods. distribution functions. Simulation modeling: discrete-event simulation, continuous simulation; verification and validation of simulation models: input analysis, output

1 Theory
analysis. Queuing theory models; design codes, test and debug simulation programs. Sample applications.

1901757 Image Processing 3' Credit Hours
The course provides mathematical foundations and practical techniques for digital manipulation of images, image acquisition, representation, preprocessing, segmentation, and compression. Other topics include multi-resolution image processing, wavelets, morphological image processing, noise reduction and restoration, simple feature extraction and recognition tasks, image registration.

1901766 Wireless Networks 3' Credit Hours
Wireless Networks: IEEE 802.11(Point Coordination Function and Distributed Coordination Function), WiMAX, Mobile IP; Routing Protocols for Wired and Wireless Networks: Distance Vector Routing Protocol (D.V.), Link State Routing Protocols (L.S.), Ad hoc On demand Distance Vector (AODV), Dynamic Source Routing (DSR); Advanced TCP Protocols: TCP Adaptive Timeout, TCP Adaptively for Wireless Networks: I-TCP, MTCP, Split TCP; Cellular Networks and General Packet Radio Service (GPRS); QoS and Real time applications for wireless networks.

1901767 Computer Network Security 3' Credit Hours
Advance topics in Cryptography; Authentication; Integrity; Key Distribution and Certification; Access Control: Firewalls; Attacks and Countermeasures: Mapping, Packet Sniffing, IP Spoofing, Denial-of-Service and Distributed Denial-of-Service Attacks, Hijacking; Security in Many Layers: HTTPS, Secure E-mail, Secure Sockets Layer (SSL) and Transport Layer Security (TLS), IPsec, Security in wireless networks such as IEEE 802.11, Mobile agents security.

1901768 Mobile Location Based Services (MLBS) 3' Credit Hours
MLBS applications: usage area, taxonomy, privacy, marketing; The development of MLBS: performance considerations; Navigation systems: spatial database, gateway services, route determination location utility services,...; MLBS and data management: middleware for MLBS protocol, content modeling, update management, linear referencing; MLBS interoperability and standards; MLBS data collection: satellite positioning systems, indoor positioning systems, network-based positioning; MLBS data transmission in Mobile communication systems: cellular-based mobile, wireless local area networks, ad-hoc networking, and service discovery.
1901775 Programming Languages Design 3^1 Credit Hours
This course discusses advanced principles underlying current programming languages and models. Topics include control and data abstractions, language processing and binding, indeterminacy and delayed evaluation, and languages and models for parallel and distributed processing. A variety of computational paradigms are discussed: functional programming, logic programming, object-oriented programming and data flow programming.

1901788 Selected Topics in Computer Science 3^1 Credit Hours
Lectures on and study of selected topics in current research and recent developments in computer science.

1 Theory